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1.  Introduction. 

 
Wilson et al. (2006, hereafter W06) recently described the application of the 

Bayesian model averaging (BMA, Raftery et al. 2005, hereafter R05) calibration 

technique to surface temperature forecasts using the Canadian ensemble prediction 

system.  The BMA technique as applied in W06 produced an adjusted probabilistic 

forecast from an ensemble through a two-step procedure.  The first step was the 

correction of biases in individual members.  The second step was the fitting of a Gaussian 

kernel around each member of the ensemble.  The amount of weight applied to each 

member’s kernel and the width of the kernel(s) were typically set through an Estimation-

Maximization (EM) algorithm (Dempster et al. 1997).  The final probability density 

function (pdf) was a sum of the weighted kernels. 

W06 reported (their Fig. 2) that at any given instant, a majority of the ensemble 

members were typically assigned zero weight, while a few select members received the 

majority of the weight.  Which members received large weights varied from one day to 

the next. These results were counter-intuitive; why discard the information from so many 

ensemble members?  Why should one member have value one day and none the next? 

 This comment to W06 will show that BMA based on EM is not an appropriate 

technique to use with small sample sizes; specifically, the radically unequal weights of 

W06 exemplify an overfitting (Wilks 2006a, p. 206) to the training data. In W06, the EM 

algorithm was required to set the weights of 16 individual ensemble members with 25-80 

days of data.    

 To illustrate this point, a recent reforecast data set was used. This was comprised 

of many decades of daily ensemble forecasts with perturbed initial conditions and a 
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single forecast model.  This large data set permitted a comparison of techniques with 

small and very large training samples.  This reforecast data set used a T62, circa 1998 

version of the National Centers for Environmental Prediction (NCEP) Global Forecast 

System (GFS).  A 15-member forecast, consisting of a control and 7 bred pairs (Toth and 

Kalnay 1997) was integrated to 15 days lead for every day from 1979 to current.   For 

more details on this reforecast data set, please see Hamill et al. (2006). The verification 

data was the NCEP/NCAR reanalysis (Kalnay et al. 1996). 

 
 
2.  Overfitting with the BMA-EM algorithm. 

 
 EM is an iterative algorithm that adjusts the BMA model parameters (here, the 

weights, plus the standard deviation to apply to each kernel) through a two-step 

procedure of parameter estimation and maximization. R05 (eqs. 5-6, and accompanying 

text) provides details.  The algorithm iterates to convergence, stopping when the change 

in log-likelihood function from one iteration to the next is less than a cutoff δ. The 

magnitude of δ may be chosen by the user, but is assumed δ  << 1.0 .  

To illustrate the tendency for the BMA EM to overfit when trained with small 

sample sizes, consider 4-day 850 hPa temperature ensemble forecasts for a grid point 

near Montreal, Canada. Forecasts were produced and validated for the 23 years * 365 

days = 8395 cases.  Because we would like to assume in this example a priori that the 

member weights should be equal, the 15-member ensemble was thinned, eliminating the 

slightly more accurate control member.  The BMA algorithm was then trained using the 

remaining 14 identically distributed bred members and only the prior 40 days’ forecasts 

and analyses, posited in W06 to be an acceptably long training period (note: here, the 40-
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day training data for early in the first year of the data set used data from the end of year 

23).  In addition, the BMA algorithm was also trained in a cross validated manner using 

22 years*91 days of data, with the 91 days centered on the Julian day of the forecast.  

  The BMA algorithm was coded generally following the algorithm used in the R05 

and W06 articles.   Two adjustments were used, however.   First, no refinement to 

maximize the CRPS was performed, as suggested in R05.  This had minimal impact.  

Second, W06’s proposed regression correction was applied only to the ensemble mean, 

while the original deviation of each member about the mean was preserved.  More 

concretely, given an ensemble member 

� 

xi
f , an ensemble mean

� 

x
f

, and a regression-

corrected ensemble-mean forecast

� 

a + bx
f( ), the member forecast was replaced with a 

forecast that was the sum of the initial perturbation from the ensemble mean and the 

corrected forecast: 

 
 

� 

xi
f
! xi

f
" x

f( ) + a + bx
f( )  .      (1) 

 
This alternative regression approach was used because when every member was 

regressed separately, as forecast lead increased, all the members were regressed toward 

climatology and the ensemble spread of adjusted members shrank (see also Wilks 

2006b).  This is clearly an undesirable property; the spread should asymptotically 

approach the climatological spread of the ensemble forecast. 

 We now consider the properties of the EM algorithm.  The initial guess for all 

member weights was 1/14.  Keeping track of the ratio of maximum to minimum BMA 

member weights for each of the 8395 cases, these ratios were sorted, and the median ratio 

was plotted as the EM convergence criterion δ was varied.  For the 40-day training 
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period, when δ = 0.01, the largest and smallest weights were much more similar 

compared to when δ  was tightened (Fig. 1a).  With the 22 years of training data, the 

weights stayed much more equal as δ was tightened (Fig. 1b).   

 Could the unequal weightings with the small training set and tight δ actually be 

realistic?   As mentioned in R05, as the EM iterates, the log-likelihood of the fit to the 

training data is guaranteed to increase.  However, we can also track the fit to the 

validation data.  Figures 2 a-b show the average training and validation log likelihoods 

(per forecast day) for the small and large training data sizes.  Notice that for the small 

sample size, the validation data log likelihood gets smaller as the convergence criterion is 

tightened, a sign that the unequal weights are not realistic.  The same effect is hardly 

noticed with the large training data set, where the weights remain nearly equal.  This 

demonstrates that the highly variable weights are most likely an artifact of overfitting.  

Perhaps the assumption of independence of forecast errors in space and time (R05, p. 

1159) is badly violated with these ensemble forecasts, and the EM algorithm actually is 

quite sensitive to this assumption.  We agree with W06 proposition that the radical 

differences in weights are probably due to co-linearity of members’ errors in the training 

data.  What is clear here is that this co-linearity is largely is not properly estimated from 

small samples, leading to the inappropriate de-weighting and exclusion of information 

from some members. 

 Is there a way of setting the BMA weights to avoid radically de-weighting some 

members?   If co-linearity of member errors in the training data were essentially zero, 

then the weights may resemble those that would be set in a weighted least-square process. 

Suppose the training data establishes that the estimated root-mean-square errors for the 



 6 

bias-corrected members are s1, … sn .   The weights that would produce the minimum-

variance estimate of the mean state (e.g., Daley, p. 36, eq. 2.2.3) under assumptions of 

normality of errors is  

 

 
 

w
i

=
1

s
i

2

1

s
j

2

j=1

n

!  .      (2) 

 
The advantage of this method for setting weights, also, is that if there truly is a strong co-

linearity of member errors, the BMA pdf should not be any worse as a consequence of 

using the more equal weights of eq. (2) rather than the unequal weights from a highly 

iterated EM. This can be demonstrated simply by considering two member highly co-

linear forecasts with similar errors and biases, so 
 
xi
f
! x j

f . Then the weighted sums are 

similar, regardless of the partitioning of the weights.  For example, 

 
1.0! xi

f
+ 0.0! x j

f
" 0.0! xi

f
+ 1.0! x j

f
" 0.5! xi

f
+ 0.5! x j

f . 

 
4.  Conclusions. 

 
 While the BMA technique is theoretically appealing, for ensemble forecast 

calibration, the EM technique cannot be expected to set realistic weights for each member 

when using a short training data set.  Enforcing more similar weights among BMA 

members [eq. (2)] may work as well or better than the EM method.  
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FIGURE CAPTIONS 

 

Figure 1: Log10 of the median sample’s maximum member weight divided by minimum 

member weight, as a function of the EM convergence criterion. The median represents 

the (23*365/2)th rank-ordered ratio among the 23*365 sample days. (a) 40-day training 

period, (b) 22-year cross-validated training period. 

 

Figure 2:  Log likelihood (per unit day) of training and validation data as a function of 

the convergence criterion. (a) 40-day training data, and (b) 22-year cross-validated 

training data. 
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Figure 1: Log10 of the median sample’s maximum member weight divided by minimum 
member weight, as a function of the EM convergence criterion. The median represents 
the (23*365/2)th rank-ordered ratio among the 23*365 sample days. (a) 40-day training 
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Figure 2:  Log likelihood (per unit day) of training and validation data as a function of 
the convergence criterion. (a) 40-day training data, and (b) 22-year cross-validated 
training data. 
 
  
 


